Suggest a single imputation strategy for handling missing data in a DataFrame.
Parameters
Name
Type
Description
Default
df
pd.DataFrame
The input DataFrame containing missing values to analyze. missingness_type : str, optional (default=None) The type of missingness mechanism present in the data. Valid values: - ‘MCAR’: Missing Completely At Random - ‘MAR’: Missing At Random - ‘MAR’: Missing Not At Random If None, recommendation is based only on data characteristics.
required
Returns
Name
Type
Description
dict
A dictionary containing the imputation recommendation with the following keys: - ‘method’ (str): Recommended imputation method (e.g., ‘SimpleImputer’, ‘KNNImputer’, ‘IterativeImputer (MICE)’, ‘interpolation’, or ‘none’) - ‘reasoning’ (list of str): Explanation of factors that influenced the recommendation - ‘warnings’ (list of str): Important caveats or concerns about the data