R/train_valid_test_split.R
    train_valid_test_split.Rdtrain_valid_test_split Splits feature and target data frames into random train, validation and test subsets The proportion of the train set relative to the input data will be valid_size * (1 - test_size)
train_valid_test_split( x, y, test_size = 0.25, valid_size = 0.25, shuffle = TRUE, random_state = NULL )
| x, | y arrays  | 
    
|---|---|
| y | (data frame) Original labels from data set  | 
    
| test_size | (double, default = NULL) Value between 0.0 and 1.0 to represent the proportion of the dataset to comprise the size of the test subset  | 
    
| valid_size | float or None (default = 0.25) Value between 0.0 and 1.0 to represent the proportion of the dataset to comprise the size of the test subset  | 
    
| random_state | (int, default = NULL) Seed for the random number generator  | 
    
| x | (data frame) Original features from data set  | 
    
x = data.frame('X1'=c(0,1,2,3,4,5,6,7), 'X2'=c(8,9,10,11,12,13,14,15)) y = data.frame('Y'=c(0,1,2,3,4,5,6,7)) train_valid_test_split(x,y)$x_train#> X1 X2 #> 8 7 15 #> 5 4 12 #> 2 1 9 #> 3 2 10train_valid_test_split(x,y)$x_valid#> X1 X2 #> 7 6 14 #> 2 1 9train_valid_test_split(x,y)$x_test#> X1 X2 #> 5 4 12 #> 8 7 15train_valid_test_split(x,y)$y_train#> y_train #> 1 6 #> 2 1 #> 3 0 #> 4 7train_valid_test_split(x,y)$y_valid#> y_valid #> 1 6 #> 2 0train_valid_test_split(x,y)$y_test#> y_test #> 1 6 #> 2 4