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Summary

In this study, we aim to address the question of whether clinical features such as glucose
levels, BMI, pregnancies, and etc. can effectively predict diabetes in Pima Indian women. The
importance of this work lies in improving the early detection of diabetes, a condition that is
prevalent and can lead to severe health complications if left untreated. Early prediction and
diagnosis of diabetes can significantly improve patient outcomes through timely intervention.

We built a logistic regression model with hyperparameter optimization for C, and evaluated
its performance on the test set. The final classifier achieved an accuracy of 0.750 on the
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test set, outperforming the baseline dummy classifier’s accuracy of 0.672. Glucose was the
most significant predictor, followed by BMI and pregnancies, while blood pressure and insulin
had weaker impacts. Out of a total of 217 test cases, the model correctly predicted 162 and
misclassified 54. 41 mistakes were predicting patients with diabetes as non-diabetic (i.e. false
negatives), while 13 mistakes were predicting healthy (non-diabetic) patients with diabetes
(i.e. false positives).

The results indicate that logistic regression is a promising tool for diabetes screening, providing
an efficient way to identify potential cases. However, the high number of false negatives
is concerning, as they could lead to delayed diagnoses and treatments. The use of logistic
regression itself has some limitations as it assumes linear relationships and may not capture
complex interactions between features. Future improvements could include feature engineering
of polynomial features, testing alternative machine learning models, reporting more metrics to
reflect model performance (i.e. recall and / or f2 score to focus on reducing false negatives), and
incorporating additional data, such as lifestyle or genetic factors. Moreover, adding probability
estimates for predictions could also enhance its clinical usability by helping prioritize further
diagnostic tests. These steps could make the model more reliable and practical for real-world
healthcare applications.

Introduction

Diabetes is a serious chronic disease characterized by high levels of glucose in the blood,
which can result from insufficient insulin production or the body’s inability to effectively use
insulin. Its prevalence has nearly doubled since 1980, with 14% of adults aged 18 and older
diagnosed with diabetes in 2022, up from 7% in 1990 (World Health Organization n.d.). The
disease can lead to severe complications, including blindness, kidney failure, heart attacks,
strokes, and lower limb amputations. Early detection allows for timely interventions, reducing
complications and healthcare costs, and improving quality of life and long-term outcomes
(Marshall and Flyvbjerg 2006).

Artificial intelligence (AI) leverages computer systems and big data to simulate intelligent
behavior with minimal human intervention, and within it, machine learning (ML) is a subset
of AI methodologies. Since the rise of AI, Machine learning has increasingly been applied in
various areas of disease detection and prevention in the healthcare field (Bini 2018). Numerous
machine learning techniques have been deployed to develop more efficient and effective methods
for diagnosing chronic diseases (Battineni et al. 2020). Utilizing machine learning methods
in diabetes research has been proven to be a critical strategy or harnessing large volumes of
diabetes-related data to extract valuable insights (Agarwal and Vadiwala 2022).

This study aims to address the research question: can diabetes in Pima Indian women be
accurately predicted using clinical features such as glucose levels, BMI, and pregnancies? The
dataset used for this analysis, the Pima Indians Diabetes Database, contains clinical data for
768 women aged 21 and older, with 8 input variables: number of pregnancies, plasma glucose
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concentration, iastolic blood pressure, triceps skinfold thickness, serum insulin, body mass
index (BMI), diabetes pedigree function, and age. The output variable is whether or not the
woman has diabetes, with two classes: positive (1) or negative (0). To this end, the objective
of this report is to evaluate the predictive performance of logistic regression (LR), a supervised
machine learning model, in diagnosing diabetes.

Methods

Data

The dataset that was used for the analysis of this project was created by Jack W Smith, JE
Everhart, WC Dickson, WC Knowler, RS Johannes and sourced from the National Librabry
of Medicine database from the National Institues of Health. Access to their respective analysis
can be found here and access to the dataset can be found via kaggle (Dua and Graff 2017).
The primary objective of the dataset is to enable diagnostic prediction of whether a patient
has diabetes based on specific diagnostic measurements. The dataset comprises 768 female
patients aged 21 and older, all of whom are of Pima Indian heritage, located primarily in the
Central and Southern regions of the United States.

Each row/obersvation from the dataset is an individual that identifies to be a part of the
Pima (also known as The Akimel O’odham) Indeginous group. Each observation recorded has
summary statistics regarding features that include the Age, BMI, Blood Pressure, Number of
Pregnancies, as well as The Diabetes Pedigree Function (which is a score that gives an idea
about how much correlation is between person with diabetes and their family history). The
output variable in the dataset is whether the patient is diabetic (outcome), with two classes:
diabetic (1) or non-diabetic (0). The dataset is imbalanced, with 268 diabetic and 500 non-
diabetic patients. This imbalance poses challenges for classification models, which may become
biased toward predicting the majority class. Usually to address this, appropriate evaluation
metrics, such as F1 score, should be considered during model evaluation and hyperparameter
tuning to avoid the model being skewed towards the non-diabetic class.

A total of 49 observations were dropped during preliminary data validation. These rows
contained meaningless or introducing noise or spurious relationships into the model. Fur-
ther details on the dropped observations can be found in the validation log here, under
validation_errors.log. The log indicates that most of the dropped data points contain
values of 0, which are not plausible for the respective variables. As a result, we suspect these
zero values may represent missing data, recorded in this way. If we gain access to the data
collectors, we plan to confirm this assumption.
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Analysis

In this study, Logistic Regression was employed to develop a classification model for predicting
whether a patient has diabetes. The model was trained using all features in the dataset, with
the outcome column serving as the target variable. The data was split into a 70% training set
and a 30% testing set.

Hyperparameter tuning was performed using RandomizedSearchCV, and the accuracy score
was used as the evaluation metric for model performance. The hyperparameter C of the
Logistic Regression model, which controls the trade-off between model complexity and training
data fitting, was optimized using a log-uniform distribution ranging from 1 × 10−5 and 1 ×
105. The range and log-uniform distribution was chosen to efficiently explore a wide range of
values, balancing model complexity and fitting. This approach ensures the model is not overly
regularized or overfitted, promoting better generalization to unseen data.

Standardization was applied to all input variables just before model fitting to ensure that the
features were on the same scale. This process was done to improve model performance and
to help prevent any single feature from dominating the others. The analysis was conducted
using the Python programming language (Van Rossum and Drake 2009) and several Python
packages: numpy (Harris et al. 2020), Pandas (McKinney 2010), altair (VanderPlas 2018),
altair_ally (Ostblom 2021) and scikit-learn (Pedregosa et al. 2011). The code used for this
analysis and report is available at: https://github.com/UBC-MDS/diabetes_predictor_py

Results

To assess the potential usefulness of each predictor in forecasting the Outcome variable: 0
(Non-Diabetic) and 1 (Diabetic), we visualized the distributions of each predictor from the
training dataset, with the distributions color-coded by class (0: blue, 1: orange) as shown in
Figure 1.

For the Glucose levels, Non-Diabetic class exhibits a roughly normal distribution, whereas the
Diabetic class shows a pronounced shift toward the middle-to-higher range of glucose levels.

The BMI distribution resembles a normal distribution but skews slightly toward higher values.
Similar to Glucose levels, the Diabetic class displays a decent shit towards the middle-to-higher
ranges when compared to Non-Diabetic class, suggesting the potential for distinct differences
between target groups within this category.

The Age distribution reveals that individuals aged 20 to 32 are predominantly Non-Diabetic.
Beyond age 32, the counts of Diabetic and Non-Diabetic individuals become comparable, with
some bins showing a higher count for the Diabetic class, despite fewer overall observations in
this group. The Non-Diabetic class leans toward younger ages, while the Diabetic class has a
more even distribution across its age range.
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For Pregnancies, Insulin, and DiabetesPedigreeFunction - genetic risk of diabetes based
on family history ranging from 0 to 2.5, the lower range of pregnancies is dominated by the
Non-Diabetic class, whereas whereas higher numbers are more common in the Diabetic class.

For Blood Pressure and Skin Thickness, both the Diabetic and Non-Diabetic classes ap-
proximates a normal distribution; however, the Non-Diabetic distribution skews slightly to-
wards lower values, while the Diabetic class skews more towards higher values.

Figure 1: Comparison of the empirical distributions of training data predictors between those
non-diabetic and diabetic.

We also examined the presence of multicollinearity among the predictors in Figure 2, as it could
be problematic when conducting a Logistic Regression. We see that highest level of correlation
is between Age and Pregnancies (0.626 via Spearman, and 0.566 by Pearson). Since this is
below the threshold of 0.7, we can conclude that all features’ coefficients are suitable and will
not cause any multicollinearity in our model.
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Figure 2: Pearson and Spearman correlations across all features.

Finally, we looked at the pairwise scatterplots between features in Figure 3 to detect any
additional patterns. For the most part, the features do not display noticeable trends. However,
Skin Thickness and BMI show a moderate visual relationship, which is intuitive since higher
body mass is generally associated with increased skin thickness.
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Figure 3: Pairwise scatterplots between each of features in dataset to visualize relationship.

We used the Dummy Classifier to act as our baseline for conducting our initial analysis. The
Dummy Baseline gives us a score of around 0.672.
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We then used Logistic Regression model for classification. We optimized the hyperparameter
C using a random search approach and have identified C = 0.027 as the optimal C to be used
in our Logistic Regression model.

Table 1: Logistic regression feature importance measured by coefficients.

Features Coefficients
Glucose 0.724
BMI 0.389
Pregnancies 0.229
Age 0.194
DiabetesPedigreeFunction 0.161
BloodPressure 0.048
SkinThickness -0.007
Insulin 0.002

Having determined the best Logistic Regression model for our analysis, we further explore
feature importance with coefficients. Based on the Table 1 above, the feature importance
coefficients for the logistic regression model predicting diabetes reveal that Glucose (0.724) is
the strongest positive influence, followed by BMI (0.389), Pregnancies (0.229), Age (0.194), and
DiabetesPedigreeFunction (0.161). The negative influence SkinThickness (-0.007) along
with the remaining positive features BloodPressure (0.048) and Insulin (0.002), have weak
impacts on the prediction, with their effects being less pronounced.

We then evaluate the best Logistic Regression model, obtained from the hyperparameter search,
on the test set. Our prediction model performed decent on test data, with a final overall
accuracy of 0.750. In addition, looking through confusion matrix (Figure 4), there are a total
of 54 mistakes. Of which, 41 mistakes were predicting diabetic as non-diabetic (false negatives)
and 13 mistakes were made predicting diabetic as non-diabetic (false positives). Considering
implementation in clinic, there is room for improvement in the algorithm as false negatives are
more harmful than false positives, and we should aim to lower false positives even further.
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Figure 4: Confusion Matrix of Test Set Prediction Accuracy

In this report, we have used the default 0.5 threshold in Logistic Regression model to predict
the patient being diabetic or non-diabetic. To better evaluate model’s performance across all
thresholds, we also presented here the Precision Recall curve (Figure 5) and the ROC curve
(Figure 6) - assessing the tradeoff between true positive and false positive rates. For both plots,
we did not observe an optimal threshold that can achieve high precision, high recall, and low
false positive rate all at once. Therefore, further improvements on the Logistic Regression
model or alternative models should be contemplated in further research.

Figure 5: Precision Recall Curve of Test Set Predictions
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Figure 6: ROC Curve of Test Set Predictions

To improve the model’s clinical utility, we provide a visualization of estimated prediction
probabilities (Figure 7) for diabetes predictions. This allows clinicians to assess the model’s
confidence in its predictions and decide whether additional diagnostic tests are needed if the
probability is not sufficiently high. Visualizing these probabilities alongside prediction accuracy
offers a clearer understanding of the model’s performance, highlighting both correct predictions
and misdiagnoses, especially false negatives, which are of particular concern in a clinical setting
due to their critical consequences.

Figure 7: Test Set Prediction Accuracy by Prediction Probability.

Discussion

While the performance of this model may be valuable as a screening tool in a clinical context,
especially given its improvements over the baseline, there are several opportunities for further
enhancement. One potential approach is to closely examine the 54 misclassified observations,
comparing them with correctly classified examples from both classes. The objective would
be to identify which features may be contributing to the misclassifications and investigate
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whether feature engineering could help the model improve its predictions on the observations
it is currently struggling with. Additionally, we would try seeing whether we can get improved
predictions using other classifiers. Other classifiers we might try are 1) random forest because
it automatically allows for feature interaction, 2) k-nearest neighbours (k-NN) which usually
provides easily interpretable and decent predictions, and 3) support vector classifier (SVC) as
it allows for non-linear prediction using the rbf kernel. Finally, there runs the possibility that
the features offered from this dataset alone are not sufficient to predict with high accuracy.
In this case, conducting additional conversations with data collectors for additional useable
information or explore additional datasets that can be joined so our set of features can be
expanded for more complicated analysis might be beneficial.

At last, we recognize the limitation with this dataset, as it focuses solely on Pima Indian
women aged 21 and older, which limits its generalizability to other populations. To improve
the analysis, it would be valuable to combine this data with other datasets representing dif-
ferent age groups, genders, and ethnicities, enabling more comprehensive insights and broader
applicability of the findings.

Conclusion

In conclusion, this study demonstrated the effectiveness of logistic regression in predicting
diabetes among Pima Indian women using diagnostic features such as glucose, BMI, and
pregnancies. With an accuracy of 0.750 on the test set, the model outperformed the baseline
Dummy Classifier’s 0.672. Glucose was identified as the most influential predictor, followed
by BMI and pregnancies, while features like blood pressure, insulin, and skin thickness had
weaker impacts. However, the model’s 54 misclassifications, particularly the 41 false negatives,
underscore the need for further refinement to minimize the risk of undiagnosed cases.

These findings highlight logistic regression’s potential as an initial screening tool in clinical
settings, offering a data-driven approach to early diabetes detection. Nevertheless, improve-
ments are essential to enhance its accuracy and practical utility. Strategies such as feature
engineering, alternative machine learning models, and the incorporation of additional data,
such as lifestyle or genetic factors, could further optimize performance. Additionally, provid-
ing probability estimates for predictions could enhance clinical decision-making by identifying
cases requiring further diagnostics. With these refinements, the model could become a valuable
tool for reducing complications and improving outcomes in diabetes care.
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