Examples:
if class attendance == 1 and quiz1 == 1: quiz2 == "A+" elif class attendance == 1 and lab3 == 1 and lab4 == 1: quiz2 == "A+" ...
classification_df = pd.read_csv("data/quiz2-grade-toy-classification.csv") classification_df.head(3)
X = classification_df.drop(columns=["quiz2"]) X.head(3)
y = classification_df["quiz2"] y.head(3)
0 A+ 1 not A+ 2 not A+ Name: quiz2, dtype: object
X_binary = X.copy() columns = ["lab1", "lab2", "lab3", "lab4", "quiz1"] for col in columns: X_binary[col] = X_binary[col].apply( lambda x: 1 if x >= 90 else 0) X_binary.head()