Cluster Assignments of the Original Data Set
augment_kmeans(Model, X)
Model | A |
---|---|
X | data.frame of the original data set. |
data.frame of the original data and their cluster assignment.
#> #>#>#> #>#>#> #>library(sptidy) data(iris) data <- iris %>% select(-Species) kclust <- kmeans(data, centers = 3) augment_kmeans(kclust, data)#> Sepal.Length Sepal.Width Petal.Length Petal.Width cluster #> 1 5.1 3.5 1.4 0.2 1 #> 2 4.9 3.0 1.4 0.2 1 #> 3 4.7 3.2 1.3 0.2 1 #> 4 4.6 3.1 1.5 0.2 1 #> 5 5.0 3.6 1.4 0.2 1 #> 6 5.4 3.9 1.7 0.4 1 #> 7 4.6 3.4 1.4 0.3 1 #> 8 5.0 3.4 1.5 0.2 1 #> 9 4.4 2.9 1.4 0.2 1 #> 10 4.9 3.1 1.5 0.1 1 #> 11 5.4 3.7 1.5 0.2 1 #> 12 4.8 3.4 1.6 0.2 1 #> 13 4.8 3.0 1.4 0.1 1 #> 14 4.3 3.0 1.1 0.1 1 #> 15 5.8 4.0 1.2 0.2 1 #> 16 5.7 4.4 1.5 0.4 1 #> 17 5.4 3.9 1.3 0.4 1 #> 18 5.1 3.5 1.4 0.3 1 #> 19 5.7 3.8 1.7 0.3 1 #> 20 5.1 3.8 1.5 0.3 1 #> 21 5.4 3.4 1.7 0.2 1 #> 22 5.1 3.7 1.5 0.4 1 #> 23 4.6 3.6 1.0 0.2 1 #> 24 5.1 3.3 1.7 0.5 1 #> 25 4.8 3.4 1.9 0.2 1 #> 26 5.0 3.0 1.6 0.2 1 #> 27 5.0 3.4 1.6 0.4 1 #> 28 5.2 3.5 1.5 0.2 1 #> 29 5.2 3.4 1.4 0.2 1 #> 30 4.7 3.2 1.6 0.2 1 #> 31 4.8 3.1 1.6 0.2 1 #> 32 5.4 3.4 1.5 0.4 1 #> 33 5.2 4.1 1.5 0.1 1 #> 34 5.5 4.2 1.4 0.2 1 #> 35 4.9 3.1 1.5 0.2 1 #> 36 5.0 3.2 1.2 0.2 1 #> 37 5.5 3.5 1.3 0.2 1 #> 38 4.9 3.6 1.4 0.1 1 #> 39 4.4 3.0 1.3 0.2 1 #> 40 5.1 3.4 1.5 0.2 1 #> 41 5.0 3.5 1.3 0.3 1 #> 42 4.5 2.3 1.3 0.3 1 #> 43 4.4 3.2 1.3 0.2 1 #> 44 5.0 3.5 1.6 0.6 1 #> 45 5.1 3.8 1.9 0.4 1 #> 46 4.8 3.0 1.4 0.3 1 #> 47 5.1 3.8 1.6 0.2 1 #> 48 4.6 3.2 1.4 0.2 1 #> 49 5.3 3.7 1.5 0.2 1 #> 50 5.0 3.3 1.4 0.2 1 #> 51 7.0 3.2 4.7 1.4 2 #> 52 6.4 3.2 4.5 1.5 2 #> 53 6.9 3.1 4.9 1.5 3 #> 54 5.5 2.3 4.0 1.3 2 #> 55 6.5 2.8 4.6 1.5 2 #> 56 5.7 2.8 4.5 1.3 2 #> 57 6.3 3.3 4.7 1.6 2 #> 58 4.9 2.4 3.3 1.0 2 #> 59 6.6 2.9 4.6 1.3 2 #> 60 5.2 2.7 3.9 1.4 2 #> 61 5.0 2.0 3.5 1.0 2 #> 62 5.9 3.0 4.2 1.5 2 #> 63 6.0 2.2 4.0 1.0 2 #> 64 6.1 2.9 4.7 1.4 2 #> 65 5.6 2.9 3.6 1.3 2 #> 66 6.7 3.1 4.4 1.4 2 #> 67 5.6 3.0 4.5 1.5 2 #> 68 5.8 2.7 4.1 1.0 2 #> 69 6.2 2.2 4.5 1.5 2 #> 70 5.6 2.5 3.9 1.1 2 #> 71 5.9 3.2 4.8 1.8 2 #> 72 6.1 2.8 4.0 1.3 2 #> 73 6.3 2.5 4.9 1.5 2 #> 74 6.1 2.8 4.7 1.2 2 #> 75 6.4 2.9 4.3 1.3 2 #> 76 6.6 3.0 4.4 1.4 2 #> 77 6.8 2.8 4.8 1.4 2 #> 78 6.7 3.0 5.0 1.7 3 #> 79 6.0 2.9 4.5 1.5 2 #> 80 5.7 2.6 3.5 1.0 2 #> 81 5.5 2.4 3.8 1.1 2 #> 82 5.5 2.4 3.7 1.0 2 #> 83 5.8 2.7 3.9 1.2 2 #> 84 6.0 2.7 5.1 1.6 2 #> 85 5.4 3.0 4.5 1.5 2 #> 86 6.0 3.4 4.5 1.6 2 #> 87 6.7 3.1 4.7 1.5 2 #> 88 6.3 2.3 4.4 1.3 2 #> 89 5.6 3.0 4.1 1.3 2 #> 90 5.5 2.5 4.0 1.3 2 #> 91 5.5 2.6 4.4 1.2 2 #> 92 6.1 3.0 4.6 1.4 2 #> 93 5.8 2.6 4.0 1.2 2 #> 94 5.0 2.3 3.3 1.0 2 #> 95 5.6 2.7 4.2 1.3 2 #> 96 5.7 3.0 4.2 1.2 2 #> 97 5.7 2.9 4.2 1.3 2 #> 98 6.2 2.9 4.3 1.3 2 #> 99 5.1 2.5 3.0 1.1 2 #> 100 5.7 2.8 4.1 1.3 2 #> 101 6.3 3.3 6.0 2.5 3 #> 102 5.8 2.7 5.1 1.9 2 #> 103 7.1 3.0 5.9 2.1 3 #> 104 6.3 2.9 5.6 1.8 3 #> 105 6.5 3.0 5.8 2.2 3 #> 106 7.6 3.0 6.6 2.1 3 #> 107 4.9 2.5 4.5 1.7 2 #> 108 7.3 2.9 6.3 1.8 3 #> 109 6.7 2.5 5.8 1.8 3 #> 110 7.2 3.6 6.1 2.5 3 #> 111 6.5 3.2 5.1 2.0 3 #> 112 6.4 2.7 5.3 1.9 3 #> 113 6.8 3.0 5.5 2.1 3 #> 114 5.7 2.5 5.0 2.0 2 #> 115 5.8 2.8 5.1 2.4 2 #> 116 6.4 3.2 5.3 2.3 3 #> 117 6.5 3.0 5.5 1.8 3 #> 118 7.7 3.8 6.7 2.2 3 #> 119 7.7 2.6 6.9 2.3 3 #> 120 6.0 2.2 5.0 1.5 2 #> 121 6.9 3.2 5.7 2.3 3 #> 122 5.6 2.8 4.9 2.0 2 #> 123 7.7 2.8 6.7 2.0 3 #> 124 6.3 2.7 4.9 1.8 2 #> 125 6.7 3.3 5.7 2.1 3 #> 126 7.2 3.2 6.0 1.8 3 #> 127 6.2 2.8 4.8 1.8 2 #> 128 6.1 3.0 4.9 1.8 2 #> 129 6.4 2.8 5.6 2.1 3 #> 130 7.2 3.0 5.8 1.6 3 #> 131 7.4 2.8 6.1 1.9 3 #> 132 7.9 3.8 6.4 2.0 3 #> 133 6.4 2.8 5.6 2.2 3 #> 134 6.3 2.8 5.1 1.5 2 #> 135 6.1 2.6 5.6 1.4 3 #> 136 7.7 3.0 6.1 2.3 3 #> 137 6.3 3.4 5.6 2.4 3 #> 138 6.4 3.1 5.5 1.8 3 #> 139 6.0 3.0 4.8 1.8 2 #> 140 6.9 3.1 5.4 2.1 3 #> 141 6.7 3.1 5.6 2.4 3 #> 142 6.9 3.1 5.1 2.3 3 #> 143 5.8 2.7 5.1 1.9 2 #> 144 6.8 3.2 5.9 2.3 3 #> 145 6.7 3.3 5.7 2.5 3 #> 146 6.7 3.0 5.2 2.3 3 #> 147 6.3 2.5 5.0 1.9 2 #> 148 6.5 3.0 5.2 2.0 3 #> 149 6.2 3.4 5.4 2.3 3 #> 150 5.9 3.0 5.1 1.8 2