Courses for the 2017-2018 offering

Course Number | Block | Course Title | Short Description | 2017-2018 Instructor |
---|---|---|---|---|

DSCI 511 | 1 | Programming for Data Science | Basic programming in R and Python. Overview of data structures, iteration, flow control, and program design relevant to data exploration and analysis. When and how to exploit pre-existing libraries. | Patrick Walls and Vincenzo Coia |

DSCI 521 | 1 | Computing Platforms for Data Science | How to install, maintain, and use the data scientific software “stack”. The Unix operating system, integrated development environments, and problem solving strategies. | Giulio Dalla Riva |

DSCI 551 | 1 | Descriptive Statistics and Probability for Data Science | Fundamental concepts in probability. Statistical view of data coming from a probability distribution. | Shaun Sun |

DSCI 542 | 1 | Communication and Argumentation | How to present and interpret data science findings. Drawing on the scholarship of language and cognition, this course is about how effective data scientists write, speak, and think. | David Laing |

DSCI 523 | 2 | Data Wrangling | Converting data from the form in which it is collected to the form needed for analysis. How to clean, filter, arrange, aggregate, and transform diverse data types, e.g. strings, numbers, and date-times. | Jenny Bryan |

DSCI 512 | 2 | Algorithms and Data Structures | How to choose and use appropriate algorithms and data structures to help solve data science problems. Key concepts such as recursion and algorithmic complexity (e.g., efficiency, scalability). | Patrice Belleville |

DSCI 531 | 2 | Data Visualization I | Exploratory data analysis. Design of effective static visualizations. Plotting tools in R and Python. | Vincenzo Coia |

DSCI 552 | 2 | Statistical Inference and Computation I | The statistical and probabilistic foundations of inference, developed jointly through mathematical derivations and simulation techniques. Important distributions and large sample results. Methods for dealing with the multiple testing problem. The frequentist paradigm. | Mike Marin |

DSCI 522 | 3 | Data Science Workflows | Interactive vs. scripted/unattended analyses and how to move fluidly between them. Reproducibility through automation and dynamic, literate documents. The use of version control and file organization to enhance machine- and human-readability. | Tiffany Timbers |

DSCI 513 | 3 | Databases and Data Retrieval | How to work with data stored in relational database systems. Storage structures and schemas, data relationships, and ways to query and aggregate such data. | Laks Lakshmanan |

DSCI 561 | 3 | Regression I | Linear models for a quantitative response variable, with multiple categorical and/or quantitative predictors. Matrix formulation of linear regression. Model assessment and prediction. | Gabriela Cohen Freue |

DSCI 571 | 3 | Supervised Learning I | Introduction to supervised machine learning, with a focus on classification. K-NN, Decision trees, SVM, how to combine models via ensembling: boosting, bagging, random forests. Basic machine learning concepts such as generalization error and overfitting. | Hyeju Jang |

DSCI 562 | 4 | Regression II | Useful extensions to basic regression, e.g., generalized linear models, mixed effects, smoothing, robust regression, and techniques for dealing with missing data. | Lang Wu |

DSCI 563 | 4 | Unsupervised Learning | How to find groups and other structure in unlabeled, possibly high dimensional data. Dimension reduction for visualization and data analysis. Clustering, association rules, model fitting via the EM algorithm. | TBD |

DSCI 573 | 4 | Feature and Model Selection | How to evaluate and select features and models. Cross-validation, ROC curves, feature engineering, and regularization. | Mark Schmidt |

DSCI 532 | 4 | Data Visualization II | How to make principled and effective choices with respect to marks, spatial arrangement, and colour. Analysis, design, and implementation of interactive figures. How to provide multiple views, deal with complexity, and make difficult decisions about data reduction. | Tamara Munzner |

DSCI 524 | 5 | Collaborative Software Development | How to exploit practices from collaborative software development techniques in data scientific workflows. Appropriate use of abstraction and classes, the software life cycle, unit testing / continuous integration, and packaging for use by others. | Meghan Allen |

DSCI 553 | 5 | Statistical Inference and Computation II | Bayesian reasoning for data science. How to formulate and implement inference using the prior-to-posterior paradigm. | Paul Gustafson |

DSCI 572 | 5 | Supervised Learning II | Introduction to optimization. Gradient descent and stochastic gradient descent. Roundoff error and finite differences. Neural networks and deep learning. | Mike Gelbart |

DSCI 541 | 5 | Privacy, Ethics, and Security | The legal, ethical, and security issues concerning data, including aggregated data. Proactive compliance with rules and, in their absence, principles for the responsible management of sensitive data. Case studies. | Ed Knorr |

DSCI 525 | 6 | Web and Cloud Computing | How to use the web as a platform for data collection, computation, and publishing. Accessing data via scraping and APIs. Using the cloud for tasks that are beyond the capability of your local computing resources. | Mike Feeley |

DSCI 554 | 6 | Experimentation and Causal Inference | Statistical evidence from randomized experiments versus observational studies. Applications of randomization, e.g., A/B testing for website optimization. | Paul Gustafson |

DSCI 574 | 6 | Spatial and Temporal Models | Model fitting and prediction in the presence of correlation due to temporal and/or spatial association. ARIMA models. | Natalia Nolde |

DSCI 575 | 6 | Advanced Machine Learning | Advanced machine learning methods, with an undercurrent of natural language processing (NLP) applications. Bag of words, recommender systems, topic models, ranking, natural language as sequence data, POS tagging, CRFs for named entity recognition and RNNs for text synthesis. An introduction to popular NLP libraries in Python. | Mark Schmidt |

DSCI 591 | 7 | Capstone Project | A mentored group project based on real data and questions from a partner within or outside the university. Students will formulate questions and design and execute a suitable analysis plan. The group will work collaboratively to produce a project report, presentation, and possibly other products, such as a web application. | MDS staff. |