fit_regressor.Rd
Fit dummy regressor and linear regression models
fit_regressor(
train_df,
target_col = NULL,
numeric_feats = NULL,
categorical_feats = NULL,
cv = 5
)
dataframe that will be used to train the model
The column that needs to be classified as a string
The numeric columns as a vector character
The categorical columns as a vector character
The number of cross validation folds as an integer
A data frame
fit_regressor(gapminder::gapminder, target_col="gdpPercap", numeric_feats=c("pop"), categorical_feats <- c("continent"), cv =5)
#> Warning: There were missing values in resampled performance measures.
#> Warning: prediction from a rank-deficient fit may be misleading
#> Warning: prediction from a rank-deficient fit may be misleading
#> Warning: prediction from a rank-deficient fit may be misleading
#> Warning: prediction from a rank-deficient fit may be misleading
#> Warning: prediction from a rank-deficient fit may be misleading
#> t=100, m=3
#> t=200, m=5
#> t=300, m=3
#> t=400, m=3
#> t=500, m=5
#> t=600, m=3
#> t=700, m=3
#> t=800, m=3
#> t=900, m=4
#> t=100, m=3
#> t=200, m=5
#> t=300, m=4
#> t=400, m=3
#> t=500, m=4
#> t=600, m=4
#> t=700, m=4
#> t=800, m=4
#> t=900, m=4
#> t=100, m=5
#> t=200, m=3
#> t=300, m=4
#> t=400, m=4
#> t=500, m=5
#> t=600, m=3
#> t=700, m=3
#> t=800, m=4
#> t=900, m=4
#> t=100, m=3
#> t=200, m=4
#> t=300, m=3
#> t=400, m=3
#> t=500, m=3
#> t=600, m=3
#> t=700, m=4
#> t=800, m=3
#> t=900, m=3
#> t=100, m=4
#> t=200, m=4
#> t=300, m=4
#> t=400, m=4
#> t=500, m=5
#> t=600, m=3
#> t=700, m=5
#> t=800, m=3
#> t=900, m=3
#> t=100, m=5
#> t=200, m=3
#> t=300, m=4
#> t=400, m=3
#> t=500, m=3
#> t=600, m=5
#> t=700, m=3
#> t=800, m=3
#> t=900, m=3
#> models Rsquared RMSE
#> 1 Dummy regressor NaN 9758.116
#> 2 Linear regression 0.2561448 8443.195
#> 3 Ridge 0.2379906 8583.318
fit_regressor(gapminder::gapminder, target_col="gdpPercap", numeric_feats=c("year", "lifeExp", "pop"), categorical_feats <- c("continent"), cv =5)
#> Warning: There were missing values in resampled performance measures.
#> Warning: prediction from a rank-deficient fit may be misleading
#> Warning: prediction from a rank-deficient fit may be misleading
#> Warning: prediction from a rank-deficient fit may be misleading
#> Warning: prediction from a rank-deficient fit may be misleading
#> Warning: prediction from a rank-deficient fit may be misleading
#> t=100, m=5
#> t=200, m=6
#> t=300, m=6
#> t=400, m=6
#> t=500, m=5
#> t=600, m=5
#> t=700, m=5
#> t=800, m=6
#> t=900, m=5
#> t=100, m=7
#> t=200, m=6
#> t=300, m=5
#> t=400, m=6
#> t=500, m=5
#> t=600, m=7
#> t=700, m=6
#> t=800, m=6
#> t=900, m=6
#> t=100, m=6
#> t=200, m=6
#> t=300, m=5
#> t=400, m=7
#> t=500, m=4
#> t=600, m=7
#> t=700, m=6
#> t=800, m=5
#> t=900, m=5
#> t=100, m=6
#> t=200, m=5
#> t=300, m=6
#> t=400, m=6
#> t=500, m=4
#> t=600, m=6
#> t=700, m=6
#> t=800, m=4
#> t=900, m=4
#> t=100, m=4
#> t=200, m=6
#> t=300, m=5
#> t=400, m=5
#> t=500, m=4
#> t=600, m=5
#> t=700, m=3
#> t=800, m=4
#> t=900, m=6
#> t=100, m=5
#> t=200, m=6
#> t=300, m=6
#> t=400, m=6
#> t=500, m=6
#> t=600, m=5
#> t=700, m=6
#> t=800, m=6
#> t=900, m=6
#> models Rsquared RMSE
#> 1 Dummy regressor NaN 9758.116
#> 2 Linear regression 0.4021298 7596.120
#> 3 Ridge 0.3774341 7768.282